Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of high temperature on photosynthesis and related gene expression in poplar.

Identifieur interne : 002261 ( Main/Exploration ); précédent : 002260; suivant : 002262

Effects of high temperature on photosynthesis and related gene expression in poplar.

Auteurs : Yuepeng Song ; Qingqing Chen ; Dong Ci ; Xinning Shao ; Deqiang Zhang [République populaire de Chine]

Source :

RBID : pubmed:24774695

Descripteurs français

English descriptors

Abstract

BACKGROUND

High temperature, whether transitory or constant, causes physiological, biochemical and molecular changes that adversely affect tree growth and productivity by reducing photosynthesis. To elucidate the photosynthetic adaption response and examine the recovery capacity of trees under heat stress, we measured gas exchange, chlorophyll fluorescence, electron transport, water use efficiency, and reactive oxygen-producing enzyme activities in heat-stressed plants.

RESULTS

We found that photosynthesis could completely recover after less than six hours of high temperature treatment, which might be a turning point in the photosynthetic response to heat stress. Genome-wide gene expression analysis at six hours of heat stress identified 29,896 differentially expressed genes (15,670 up-regulated and 14,226 down-regulated), including multiple classes of transcription factors. These interact with each other and regulate the expression of photosynthesis-related genes in response to heat stress, controlling carbon fixation and changes in stomatal conductance. Heat stress of more than twelve hours caused reduced electron transport, damaged photosystems, activated the glycolate pathway and caused H2O2 production; as a result, photosynthetic capacity did not recover completely.

CONCLUSIONS

This study provides a systematic physiological and global gene expression profile of the poplar photosynthetic response to heat stress and identifies the main limitations and threshold of photosynthesis under heat stress. It will expand our understanding of plant thermostability and provides a robust dataset for future studies.


DOI: 10.1186/1471-2229-14-111
PubMed: 24774695
PubMed Central: PMC4036403


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of high temperature on photosynthesis and related gene expression in poplar.</title>
<author>
<name sortKey="Song, Yuepeng" sort="Song, Yuepeng" uniqKey="Song Y" first="Yuepeng" last="Song">Yuepeng Song</name>
</author>
<author>
<name sortKey="Chen, Qingqing" sort="Chen, Qingqing" uniqKey="Chen Q" first="Qingqing" last="Chen">Qingqing Chen</name>
</author>
<author>
<name sortKey="Ci, Dong" sort="Ci, Dong" uniqKey="Ci D" first="Dong" last="Ci">Dong Ci</name>
</author>
<author>
<name sortKey="Shao, Xinning" sort="Shao, Xinning" uniqKey="Shao X" first="Xinning" last="Shao">Xinning Shao</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No, 35, Qinghua East Road, Beijing 100083, P, R, China. DeqiangZhang@bjfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No, 35, Qinghua East Road, Beijing 100083, P, R</wicri:regionArea>
<wicri:noRegion>R</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24774695</idno>
<idno type="pmid">24774695</idno>
<idno type="doi">10.1186/1471-2229-14-111</idno>
<idno type="pmc">PMC4036403</idno>
<idno type="wicri:Area/Main/Corpus">002209</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002209</idno>
<idno type="wicri:Area/Main/Curation">002209</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002209</idno>
<idno type="wicri:Area/Main/Exploration">002209</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of high temperature on photosynthesis and related gene expression in poplar.</title>
<author>
<name sortKey="Song, Yuepeng" sort="Song, Yuepeng" uniqKey="Song Y" first="Yuepeng" last="Song">Yuepeng Song</name>
</author>
<author>
<name sortKey="Chen, Qingqing" sort="Chen, Qingqing" uniqKey="Chen Q" first="Qingqing" last="Chen">Qingqing Chen</name>
</author>
<author>
<name sortKey="Ci, Dong" sort="Ci, Dong" uniqKey="Ci D" first="Dong" last="Ci">Dong Ci</name>
</author>
<author>
<name sortKey="Shao, Xinning" sort="Shao, Xinning" uniqKey="Shao X" first="Xinning" last="Shao">Xinning Shao</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No, 35, Qinghua East Road, Beijing 100083, P, R, China. DeqiangZhang@bjfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No, 35, Qinghua East Road, Beijing 100083, P, R</wicri:regionArea>
<wicri:noRegion>R</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ascorbate Peroxidases (metabolism)</term>
<term>Catalase (metabolism)</term>
<term>Chlorophyll (metabolism)</term>
<term>Down-Regulation (genetics)</term>
<term>Electron Transport (MeSH)</term>
<term>Gases (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Ontology (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Hot Temperature (MeSH)</term>
<term>Hydrogen Peroxide (metabolism)</term>
<term>Malondialdehyde (metabolism)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Photosynthesis (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Stress, Physiological (genetics)</term>
<term>Superoxide Dismutase (metabolism)</term>
<term>Time Factors (MeSH)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcription, Genetic (MeSH)</term>
<term>Up-Regulation (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Annotation de séquence moléculaire (MeSH)</term>
<term>Ascorbate peroxidases (métabolisme)</term>
<term>Catalase (métabolisme)</term>
<term>Chlorophylle (métabolisme)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Facteurs temps (MeSH)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Gaz (métabolisme)</term>
<term>Gene Ontology (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Malonaldéhyde (métabolisme)</term>
<term>Peroxyde d'hydrogène (métabolisme)</term>
<term>Photosynthèse (génétique)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Régulation négative (génétique)</term>
<term>Régulation positive (génétique)</term>
<term>Stress physiologique (génétique)</term>
<term>Superoxide dismutase (métabolisme)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Température élevée (MeSH)</term>
<term>Transcription génétique (MeSH)</term>
<term>Transport d'électrons (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ascorbate Peroxidases</term>
<term>Catalase</term>
<term>Chlorophyll</term>
<term>Gases</term>
<term>Hydrogen Peroxide</term>
<term>Malondialdehyde</term>
<term>Plant Proteins</term>
<term>Superoxide Dismutase</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Down-Regulation</term>
<term>Photosynthesis</term>
<term>Populus</term>
<term>Stress, Physiological</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Régulation négative</term>
<term>Régulation positive</term>
<term>Stress physiologique</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Ascorbate peroxidases</term>
<term>Catalase</term>
<term>Chlorophylle</term>
<term>Facteurs de transcription</term>
<term>Feuilles de plante</term>
<term>Gaz</term>
<term>Malonaldéhyde</term>
<term>Peroxyde d'hydrogène</term>
<term>Protéines végétales</term>
<term>Superoxide dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electron Transport</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Ontology</term>
<term>Genes, Plant</term>
<term>Hot Temperature</term>
<term>Molecular Sequence Annotation</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Time Factors</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Annotation de séquence moléculaire</term>
<term>Facteurs temps</term>
<term>Gene Ontology</term>
<term>Gènes de plante</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Température élevée</term>
<term>Transcription génétique</term>
<term>Transport d'électrons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>High temperature, whether transitory or constant, causes physiological, biochemical and molecular changes that adversely affect tree growth and productivity by reducing photosynthesis. To elucidate the photosynthetic adaption response and examine the recovery capacity of trees under heat stress, we measured gas exchange, chlorophyll fluorescence, electron transport, water use efficiency, and reactive oxygen-producing enzyme activities in heat-stressed plants.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We found that photosynthesis could completely recover after less than six hours of high temperature treatment, which might be a turning point in the photosynthetic response to heat stress. Genome-wide gene expression analysis at six hours of heat stress identified 29,896 differentially expressed genes (15,670 up-regulated and 14,226 down-regulated), including multiple classes of transcription factors. These interact with each other and regulate the expression of photosynthesis-related genes in response to heat stress, controlling carbon fixation and changes in stomatal conductance. Heat stress of more than twelve hours caused reduced electron transport, damaged photosystems, activated the glycolate pathway and caused H2O2 production; as a result, photosynthetic capacity did not recover completely.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This study provides a systematic physiological and global gene expression profile of the poplar photosynthetic response to heat stress and identifies the main limitations and threshold of photosynthesis under heat stress. It will expand our understanding of plant thermostability and provides a robust dataset for future studies.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24774695</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>12</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2014</Year>
<Month>Apr</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of high temperature on photosynthesis and related gene expression in poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>111</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-14-111</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">High temperature, whether transitory or constant, causes physiological, biochemical and molecular changes that adversely affect tree growth and productivity by reducing photosynthesis. To elucidate the photosynthetic adaption response and examine the recovery capacity of trees under heat stress, we measured gas exchange, chlorophyll fluorescence, electron transport, water use efficiency, and reactive oxygen-producing enzyme activities in heat-stressed plants.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We found that photosynthesis could completely recover after less than six hours of high temperature treatment, which might be a turning point in the photosynthetic response to heat stress. Genome-wide gene expression analysis at six hours of heat stress identified 29,896 differentially expressed genes (15,670 up-regulated and 14,226 down-regulated), including multiple classes of transcription factors. These interact with each other and regulate the expression of photosynthesis-related genes in response to heat stress, controlling carbon fixation and changes in stomatal conductance. Heat stress of more than twelve hours caused reduced electron transport, damaged photosystems, activated the glycolate pathway and caused H2O2 production; as a result, photosynthetic capacity did not recover completely.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study provides a systematic physiological and global gene expression profile of the poplar photosynthetic response to heat stress and identifies the main limitations and threshold of photosynthesis under heat stress. It will expand our understanding of plant thermostability and provides a robust dataset for future studies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Yuepeng</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Qingqing</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ci</LastName>
<ForeName>Dong</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shao</LastName>
<ForeName>Xinning</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Deqiang</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No, 35, Qinghua East Road, Beijing 100083, P, R, China. DeqiangZhang@bjfu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GEO</DataBankName>
<AccessionNumberList>
<AccessionNumber>GSE41557</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>04</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005740">Gases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4Y8F71G49Q</RegistryNumber>
<NameOfSubstance UI="D008315">Malondialdehyde</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>BBX060AN9V</RegistryNumber>
<NameOfSubstance UI="D006861">Hydrogen Peroxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.11</RegistryNumber>
<NameOfSubstance UI="D060387">Ascorbate Peroxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.11.1.6</RegistryNumber>
<NameOfSubstance UI="D002374">Catalase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060387" MajorTopicYN="N">Ascorbate Peroxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002374" MajorTopicYN="N">Catalase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005740" MajorTopicYN="N">Gases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063990" MajorTopicYN="N">Gene Ontology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="Y">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006861" MajorTopicYN="N">Hydrogen Peroxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008315" MajorTopicYN="N">Malondialdehyde</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>12</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>04</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24774695</ArticleId>
<ArticleId IdType="pii">1471-2229-14-111</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-14-111</ArticleId>
<ArticleId IdType="pmc">PMC4036403</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2007 Jan;49(1):46-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17233795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:601-639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Sep 6;277(36):32739-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12105211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1971 Apr 14;235(1):237-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5089710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19545370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2013 Jul;15(4):754-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23121076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Apr;51(345):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jan;53(2):264-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17999647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Feb;103(4):609-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19010801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Sep;32(9):1407-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23652820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2010 Aug;284(2):105-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20577761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2014 Jan;150(1):18-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23773142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Nov 7;302(5647):1009-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14526088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):716-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20395451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Oct 19;362(2):431-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17716623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Jul 12;15(13):1201-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16005292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2002 Jan 25;290(3):998-1009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11798174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2012 Sep;99(9):e357-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22933359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 8;281(49):37636-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17015446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2009 Oct 31;28(4):383-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19830397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2010 Aug;52(8):712-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20666927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Jul 12;15(13):1196-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16005291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Apr;116(4):1351-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9536052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Oct;140(2):163-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20561244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2013 Jun;13(2):179-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23435937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Aug;36(8):1423-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23336343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1977 Feb;59(2):309-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Sep;30(9):1035-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17661745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jan;22(1):221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20081115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1976 Sep 15;68(1):55-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">134908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 18;101(20):7833-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15136740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Oct 15;401(2):238-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20849812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Jan;135(1):62-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19121100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Jun;13(3):249-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20185358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Mar;7(3):106-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11906833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2012 Feb 16;116(6):2014-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22229638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Mar;39(3):2089-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21643752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Nov;118(3):1067-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9808752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2012 Feb;33(2):135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22286229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Jan;9(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2008 Jan;154(Pt 1):317-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18174150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 1992 Sep;65(2-3):187-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1434948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14474-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23918368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):12987-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16924117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 Oct 15;166(15):1607-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19473728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jan;15(1):63-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2004 Feb;120(2):179-186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2006 Aug;98(2):361-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16740589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 May;18(5):1292-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16617101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Aug;10(8):1391-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jul;144(3):1580-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17478634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Jul;7(7):752-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22751316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Jan;47(1):141-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16284406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Jan;1807(1):22-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20840840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2797</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24256998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Jan;10(1):75-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9477573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(7):1615-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17975207</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Qingqing" sort="Chen, Qingqing" uniqKey="Chen Q" first="Qingqing" last="Chen">Qingqing Chen</name>
<name sortKey="Ci, Dong" sort="Ci, Dong" uniqKey="Ci D" first="Dong" last="Ci">Dong Ci</name>
<name sortKey="Shao, Xinning" sort="Shao, Xinning" uniqKey="Shao X" first="Xinning" last="Shao">Xinning Shao</name>
<name sortKey="Song, Yuepeng" sort="Song, Yuepeng" uniqKey="Song Y" first="Yuepeng" last="Song">Yuepeng Song</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002261 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002261 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24774695
   |texte=   Effects of high temperature on photosynthesis and related gene expression in poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24774695" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020